T-6b allocates more assimilation product for oil synthesis and less for polysaccharide synthesis during the seed development of Arabidopsis thaliana
نویسندگان
چکیده
BACKGROUND As an Agrobacterium tumefaciens T-DNA oncogene, T-6b induces the development of tumors and the enation syndrome in vegetative tissues of transgenic plants. Most of these effects are related to increases in soluble sugar contents. To verify the potential roles of T-6b in the distribution of carbon in developing seeds, not in vegetative tissues, we fused an endosperm-specific promoter to the T-6b gene for expression in transgenic Arabidopsis thaliana plants. RESULTS The expression of T-6b in reproductive organs did not induce the development of the enation syndrome, and moreover, promoted endosperm expansion, which increased the total seed biomass by more than 10%. Additionally, T-6b also increased oil content in mature seeds by more than 10% accompanied with the decrease of starch and mucilage content at the same time. CONCLUSIONS T-6b enhances seed biomass and helps oil biosynthesis but not polysaccharides in reproductive organs without disturbing vegetative growth and development. Our findings suggest T-6b may be very useful for increasing oil production in biodiesel plants.
منابع مشابه
Seed coat mucilage cells of Arabidopsis thaliana as a model for plant cell wall research.
Plant cells are encased within a complex polysaccharide wall that strengthens the cell and has key roles in all aspects of plant cell growth, differentiation, and interaction with the environment. This dynamic structure is under continual modification during plant development, and its synthesis and modification require the activity of a myriad of enzymes. The mucilage secretory cells (MSCs) of ...
متن کاملFollowing vegetative to embryonic cellular changes in leaves of Arabidopsis overexpressing LEAFY COTYLEDON2.
Embryogenesis in flowering plants is controlled by a complex interplay of genetic, biochemical, and physiological regulators. LEAFY COTYLEDON2 (LEC2) is among a small number of key transcriptional regulators that are known to play important roles in controlling major events during the maturation stage of embryogenesis, notably, the synthesis and accumulation of storage reserves. LEC2 overexpres...
متن کاملRepression of seed maturation genes by a trihelix transcriptional repressor in Arabidopsis seedlings.
The seed maturation program is repressed during germination and seedling development so that embryonic genes are not expressed in vegetative organs. Here, we describe a regulator that represses the expression of embryonic seed maturation genes in vegetative tissues. ASIL1 (for Arabidopsis 6b-interacting protein 1-like 1) was isolated by its interaction with the Arabidopsis thaliana 2S3 promoter...
متن کاملDifferential Expression of Arabidopsis thaliana Acid Phosphatases in Response to Abiotic Stresses
The objective of this research is to identify Arabidopsis thaliana genes encoding acid phosphatases induced by phosphate starvation. Multiple alignments of eukaryotic acid phosphatase amino acid sequences led to the classification of these proteins into four groups including purple acid phosphatases (PAPs). Specific primers were degenerated and designed based on conserved sequences of PAPs isol...
متن کاملWRI1 is required for seed germination and seedling establishment.
Storage compound accumulation during seed development prepares the next generation of plants for survival. Therefore, processes involved in the regulation and synthesis of storage compound accumulation during seed development bear relevance to germination and seedling establishment. The wrinkled1 (wri1) mutant of Arabidopsis (Arabidopsis thaliana) is impaired in seed oil accumulation. The WRI1 ...
متن کامل